Theorem III. (Derivative of scalar product of two vector functions) If $\vec{u}(t)$ and $\vec{v}(t)$ be two differentiable functions of the scalar $t, 10$ show that

(M. U. 1987; B. U. '86; P. U. '86)

Proof. Let

$$
\begin{equation*}
w=\vec{u} \cdot \vec{v} \tag{1}
\end{equation*}
$$

Let $\delta \vec{u}$ and $\delta \vec{v}$ be the small increments in \vec{u} and \vec{v} respectively and $\delta \boldsymbol{w}$ be the corresponding small increment in w.

Then $w+\delta w=(\vec{u}+\delta \vec{u}) \cdot(\vec{v}+\delta \vec{v})$
or $\quad w+\delta w=\vec{u} \cdot \vec{v}+\vec{u} \cdot \delta \vec{v}+\delta \vec{u} \cdot \vec{v}+\delta \vec{u} \cdot \delta \vec{v}$.

Subtracting the corresponding sides of (1) from (2), we get

$$
w+\delta w-w=\vec{u} \cdot \vec{v}+\vec{u} \cdot \delta \vec{v}+\delta \vec{u} \cdot \vec{v}+\delta \vec{u} \cdot \delta \vec{v}-\vec{u} \cdot \vec{v}
$$

or $\delta w=\vec{u} \cdot \delta \vec{v}+\delta \vec{u} \cdot \vec{v}+\delta \vec{u} \cdot \delta \vec{v}$.
Dividing both sides by δt, we get

$$
\frac{\delta w}{\delta t}=\vec{u} \cdot \frac{\delta \vec{v}}{\delta t}+\frac{\delta \vec{u}}{\delta t} \cdot \vec{v}+\frac{\delta \vec{u}}{\delta t} \cdot \frac{\delta \vec{v}}{\delta t} \cdot \delta t
$$

Now proceeding to limits as $\delta t \rightarrow 0$, we get
$\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta w}{\delta t}=\vec{u} \cdot \operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{v}}{\delta t}+\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{u}}{\delta t} \cdot \vec{v}+\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{u}}{\delta t} \cdot \operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{u}}{\delta t} \cdot \operatorname{Lt}_{\delta t \rightarrow 0} \delta t$
or $\quad \frac{d w}{d t}=\vec{u} \cdot \frac{d \vec{v}}{d t}+\frac{d \vec{u}}{d t} \cdot \vec{v}+\frac{d \vec{u}}{d t} \cdot \frac{d \vec{v}}{d t} \cdot 0$
or $\quad \frac{d}{d t}(\vec{u} \cdot \vec{v})=\vec{u} \cdot \frac{d \vec{v}}{d t}+\frac{d \vec{u}}{d t} \cdot \vec{v}$.
Note. (i) We know that the scalar product of two vectors is commutative.

$$
\therefore \quad \frac{d \vec{u}}{d t} \cdot \vec{v}=\vec{v} \cdot \frac{d \vec{u}}{d t}
$$

Hence $\frac{d}{d t}(\vec{u} \cdot \vec{v})=\vec{u} \cdot \frac{d \vec{v}}{d t}+\vec{v} \cdot \frac{d \vec{u}}{d t}$.
(ii) Taking $\vec{v}=\vec{u}$, we have

$$
\frac{d}{d t}(\vec{u} \cdot \vec{u})=\vec{u} \cdot \frac{d \vec{u}}{d t}+\frac{d \vec{u}}{d t} \cdot \vec{u}
$$

$$
\text { or } \quad \frac{d}{d t}\left(\vec{u}^{2}\right)=2 \vec{u} \cdot \frac{d \vec{u}}{d t}
$$

Theorem IV. (Derivative of vector product of two vector functions)
$\overrightarrow{I f} u(t) \rightarrow$ (Mith. U. 1986) If $u(t)$ and $v(t)$ be two differential functions of the scalar t, to show that

(M. U. 1987; B. U. '86; Mith. U. '85)

Proof. Let

$$
\begin{equation*}
\vec{w}=\vec{u} \times \vec{v} \tag{1}
\end{equation*}
$$

Let $\delta \vec{u}$ and $\delta \vec{v}$ be the small increments in \vec{u} and \vec{v} respectively and $\delta \overrightarrow{\boldsymbol{w}}$ be the corresponding small increment in $\overrightarrow{\boldsymbol{w}}$.

Then $\vec{w}+\delta \vec{w}=(\vec{u}+\delta \vec{u}) \times(\vec{v}+\delta \vec{v})$
or $\vec{w}+\delta \vec{w}=\vec{u} \times \vec{v}+\vec{u} \times \delta \vec{u}+\delta \vec{u} \times \vec{v}+\delta \vec{u} \times \delta \vec{v} \ldots$
Subtracting the corresponding sides of (1) from (2), we get

$$
\vec{w}+\delta \vec{w}-\vec{w}=\vec{u} \times \vec{v}+\vec{u} \times \delta \vec{v}+\delta \vec{u} \times \vec{v}
$$

$$
+\delta \vec{u} \times \delta \vec{v}-\vec{u} \times \vec{v}
$$

or $\delta \vec{w}=\vec{u} \times \delta \vec{v}+\delta \vec{u} \times \vec{v}+\delta \vec{u} \times \delta \vec{v}$.
Dividing both sides by δt, we get

$$
\frac{\delta \vec{w}}{\delta t}=\vec{u} \times \frac{\delta \vec{v}}{\delta t}+\frac{\delta \vec{u}}{\delta t} \times \vec{v}+\frac{\delta \vec{u}}{\delta t} \times \frac{\delta \vec{v}}{\delta t} . \delta t
$$

Now proceeding to limits as $\delta t \rightarrow 0$, we get

$$
\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{w}}{\delta t}=\vec{u} \times \operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{v}}{\delta t}+\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{u}}{\delta t} \times \vec{v}
$$

$$
+\operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{u}}{\delta t} \times \operatorname{Lt}_{\delta t \rightarrow 0} \frac{\delta \vec{v}}{\delta t} \cdot \operatorname{Lt} \delta t
$$

or $\quad \frac{d \vec{w}}{d t}=\vec{u} \times \frac{d \vec{v}}{d t}+\frac{d \vec{u}}{d t} \times \vec{v}+\frac{d \vec{u}}{d t} \times \frac{d \vec{v}}{d t} .0$
or $\frac{d}{d t}(\vec{u} \times \vec{v})=\vec{u} \times \frac{d \vec{v}}{d t}+\frac{d \vec{u}}{d t} \times \vec{v}$.
Note. We know that the vector product of two vectors is not commutative. that is, anti-commutative.

$$
\therefore \quad \frac{d \vec{u}}{d t} \times \vec{v}=-\vec{v} \times \frac{d \vec{u}}{d t} .
$$

Hence the order of the factors in the formula

$$
\frac{d}{d t}(\vec{u} \times \vec{v})=\vec{u} \times \frac{d \vec{v}}{d t}+\frac{d \vec{u}}{d t} \times \vec{v}
$$

must be strictly maintained.

